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This paper explores the precise extent of discounting needed to generate period-three
cycles in a standard aggregative dynamic optimization framework. It is shown that there
is a ``universal constant'', M#[(- 5&1)�2]2

r0.3819, such that (i) if an optimal
program of any dynamic optimization model exhibits a period-three cycle, then the dis-
count factor is less than M; and (ii) if the discount factor is smaller than M, then it is
possible to construct a transition possibility set and a utility function such that the result-
ing dynamic optimization model exhibits a period-three cycle. Journal of Economic
Literature Classification Numbers: C61, E32, O41. � 1996 Academic Press, Inc.

1. Introduction

Consider a standard aggregative dynamic optimization framework
(0, u, $), where 0 is the transition possibility (technology) set, u is a (reduced
form) utility function defined on this set, and 0<$<1 a discount factor.
Can an optimal program in this framework exhibit a period-three cycle

I will show, in this paper, that a complete answer to this question can
be given as follows. There is a ``universal constant''1 defined by

M#[(- 5&1)�2]2
r0.3819 (1.1)
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1 The constant, M, is closely related to the well-known ``golden ratio,'' 8. We recall, briefly,
how the golden ratio is defined. If we divide a line into two parts (A and B) such that the
ratio of A to B is the same as the ratio of the line itself to A, then the ratio of A to B is called
the golden ratio. The relevant equation to solve is: (A�B)=(A+B)�A. Denoting (A�B) by x,
we get the equation: x=1+(1�x), which is a quadratic: x2&x&1=0. The positive solution
(denoted by 8) is given by 8=[1+- 5]�2r1.618. [The number, 8, figures prominently in
Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21, 34, ..., where each entry is obtained by adding the pre-
vious two entries, beginning traditionally with 1 and 1. The successive ratios; 2�1, 3�2, 5�3, 8�5,
13�8, ..., converge to the golden ratio 8.] It is clear from the way in which we solved for 8
that the reciprocal of 8 is (1�8)=8&1=(- 5&1)�2r0.618. Thus (1�8)=- M, and so
(1�M)=82=8+1. This means that since M is an exact discount factor restriction for period-
three cycles, (1�M)&1=8 is an exact discount rate restriction for period-three cycles.
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such that (i) if an optimal program of any dynamic optimization model
(0, u, $) exhibits a period-three cycle, then $<M, and (ii) if $<M, then
it is possible to construct a transition possibility set, 0, and a reduced-form
utility function, u, such that the dynamic optimization model (0, u, $) has
an optimal program exhibiting a period-three cycle.2

The question stated above has a history which is useful to review in order
to place this paper in proper perspective. It stems from the issue of whether
chaotic economic behavior can be explained by models of infinitely lived
rational agents. Boldrin and Montrucchio [3] took a significant step in
addressing this issue when they showed that any twice continuously differen-
tiable function can be a policy function of an appropriately defined dynamic
optimization model Thus, in particular, if we take the C2 function to be the
``logistic map'' (h(x)=4x(1&x) for x # [0, 1]), we can show that optimal
trajectories can be chaotic for some suitably constructed dynamic optimiza-
tion model. (This was also independently demonstrated by Deneckere and
Pelikan [7]).

It turned out that the dynamic optimization model (0, u, $) constructed
to yield the logistic map as its policy function had an extremely small dis-
count factor (about 0.01). This raised the question of whether chaotic tra-
jectories can be ruled out when more ``reasonable'' discount factors
prevailed, or whether this feature of the dynamic optimization model was
simply a shortcoming of the particular method used in its construction.

Sorger [21] has constructed examples of dynamic optimization models
(using somewhat different methods from those in Boldrin and Montrucchio
[3]), for which the logistic map is the policy function when the discount
factor is about 0.04. While this is four times larger than the previous dis-
count factors used, it is still very small, entailing a discount rate of over
20000.

A major step in understanding the relation between discounting and the
existence of chaotic optimal trajectories was taken by Sorger [20] when he
showed (among other things) that if the policy function of any dynamic
optimization model is the logistic map, then its associated discount factor
must be smaller than 0.5. The remarkable aspect of this discount factor
restriction is that it is completely independent of the particular nature of
the transition possibility set or of the utility function [beyond the standard
properties imposed in such models].

While the result of Sorger [20] settled one issue, it naturally raised
another. It was clearly not necessary to generate a logistic map as the
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2 After completing this paper, I learned that essentially the same result has been independ-
ently obtained by Nishimura and Yano [18]. Their maintained assumptions on the dynamic
optimization model differ somewhat from those used in this paper. Their approach in obtain-
ing the basic result is quite different from mine.
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policy function of a dynamic optimization model in order to show that
optimal trajectories can be chaotic. Any continuous policy function which
generates a period three cycle is chaotic, and the question arises whether
the existence of a period three optimal cycle by itself (that is, without
knowing other spects of the continuous policy function) leads to suitable
restrictions on the discount factor.

Using the theory of stochastic dominance, Sorger [22] showed that if
any dynamic optimization model (0, u, $) generates a periodic optimal
program of period three, then the discount factor, $, must satisfy

$<(- 5&1)�2r0.618 (1.2)

This bound has been later refined to $<0.5479 in Sorger [23].
Montrucchio [14] independently arrived at some discount rate restric-

tions for dynamic complexity of optimal programs by exploiting the theory
of strongly concave functions. He established (under a strong concavity
assumption on the utility function) a relation between the discount factor
of a dynamic optimization model and the topological entropy of its policy
function. I have shown elsewhere (see Mitra [13]) that this result can be
used to establish the discount factor restriction (1.2) for any dynamic
optimization model (0, u, $) which generates a period-three optimal cycle.

The present paper differs from the literature in two significant dimen-
sions. First, we provide an exact discount factor restriction, as indicated in
(1.1); it also happens to be a better restriction than any proposed in the
literature so far for period-three cycles.

Second, the method used in this paper is completely distinct from those
employed in this literature. It has often been noted that when there is
chaotic dynamic behavior, there must be intertemporal arbitrage oppor-
tunities for high discount factors, and the discount factor restrictions for
optimal chaotic paths is simply a reflection of this fact. However, the
methods that have been used in the literature in obtaining these discount
factor restrictions do not illustrate this intuition. In contrast, in this paper,
we rely heavily on the theory of dual variables or shadow prices associated
with optimal programs, and all our discount factor restrictions are
obtained from the simple observation that at these ``supporting'' prices, no
activity yields a higher (generalized) profit at any date than the activity
chosen along the optimal program at that date. In other words, there are
no intertemporal arbitrage opportunities at the prevailing ``supporting''
prices. The technical advantage of this method for the problem studied in
this paper is that it makes all the proofs entirely elementary.

This method, which I refer to as the ``value-loss approach'' is, of course,
very familiar to optimal growth theorists. It is most closely associated with
McKenzie's contributions to ``turnpike theory'' (see McKenzie [11] for
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a survey). It has also figured prominently in (i) the literature on the
stability of Hamiltonian dynamical systems (see especially Cass and Shell
[5]) and in (ii) the literature on the intertemporal decentralization of the
transversality condition (see especially Brock and Majumdar [4] and
Dasgupta and Mitra [6]).

2. Chaos

2a. Periodic Orbits

Let I be an interval in R, the set of reals. Let f: I � I be a continuous
map of the interval I into itself. The pair (I, f ) is called a dynamical system;
I is called the state space and f the law of motion of the dynamical system.

We write f 0(x)=x and for any integer n�1, f n(x)=f [ f n&1(x)]. If
x # I, the sequence {(x)=[ f n(x)]�

0 is called the trajectory from (the initial
condition) x. The orbit from x is the set #(x)=[ y: y=f n(x) for some
n�0].

A point x # I is a fixed point of f if f (x)=x. A point x # I is called a
periodic point of f if there is k�1 such that f k(x)=x. The smallest such k
is called the period of x. [In particular, if x # I is a fixed point of f, it is
periodic with period 1] . If x # I is a periodic point with period k, we also
say that the orbit of x (or trajectory from x) is periodic with period k.

The following striking result, due to Sarkovskii [19], is a fundamental
result on the existence of periodic orbits. A good discussion of this result
is contained in Block and Coppel [2].

Proposition 1. Let the positive integers be totally ordered in the follow-
ing way:

3O5O7O9O } } } O2.3O2.5O } } } O22.3O22.5O } } } O23O22O2O1.

If f has a periodic orbit of period n and if nOm, then f also has a periodic
orbit of period m.

2b. Aperiodic Orbits

In order to study the nature of trajectories which are not periodic, it is
useful to define a ``scrambled'' set. A set S/I is called a scrambled set if it
possesses the following two properties:

(i) If x, y # S with x{y, then

lim sup
n � �

| f n(x)&f n( y)|>0

284 TAPAN MITRA
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and

lim inf
n � �

| f n(x)&f n( y)|=0.

(ii) If x # S and y is any periodic point of f,

lim
n � �

| f n(x)&f n( y)|>0.

Thus trajectories starting from points in a scrambled set are not even
``asymptotically periodic.'' Furthermore, for any pair of initial states in the
scrambled set, the trajectories move apart and return close to each other
infinitely often.

The following theorem, due to Li and Yorke [9], is fundamental in
establishing a connection between the existence of period-three cycles and
the existence of an uncountable scrambled set.

Proposition 2. Assume that there is some point x* in I such that

f 3(x*)�x*< f (x*)< f 2(x*)(or f 3(x*)�x*> f (x*)> f 2(x*)). (2.1)

Then

(i) for every positive integer k=1, 2, ..., there is a periodic point of
period k.

(ii) there is an uncountable scrambled set S/I.

We will say that the dynamical system (I, f ) is chaotic if conditions (i)
and (ii) of Proposition 2 are satisfied.3 Note that if (I, f ) has a periodic
point of period three, we can order the three values so that a<c<b. Then
either (i) f (c)=b, in which case f (b)=a, and f (a)=c, or (ii) f (c)=a, in
which case f (a)=b and f (b)=c. In case (i), choosing x*=a, we have
f (x*)=f (a)=c>a=x*; f 2(x*)=f (c)=b>c=f (x*); f 3(x*)=f (b)=
a=x*. In case (ii), choosing x*=b, we have f (x*)=f (b)=c<b=x*;
f 2(x*)=f (c)=a<c=f (x*); f 3(x*)=f (a)=b=x*. Thus, in either case,
condition (2.1) of Proposition 2 is satisfied, and (I, f ) is chaotic. On the
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3 This is the notion of chaos, which is referred to in the literature as ``Li-Yorke chaos.'' An
alternate definition, proposed in the work of Li et al. [10] involves the existence of (i)
infinitely many periodic points of different periods and (ii) an uncountable scrambled set.
They have shown that if f has a periodic point of period which is not a power of 2, then f
is chaotic in this sense. We focus, in this paper, on Li-Yorke chaos but our discussion in Sec-
tion 7 relates to the alternate definition. Both definitions involve topological chaos, which is
quite distinct from the notion of ergodic chaos, an important concept in the study of complex
dynamic behavior. We do not discuss the concept of ergodic chaos in this paper.
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other hand, if (I, f ) is chaotic, then by condition (i), it has a periodic point
of period three. Thus, (I, f ) is chaotic if and only if (I, f ) has a periodic
point of period three.

3. Dynamic Optimization

3a. The Model

The framework is described by a triplet (0, u, $), where 0, a subset of
R+ _R+ , is a transition possibility set, u: 0 � R is a utility function
defined on this set, and $ is the discount factor satisfying 0<$<1.

The transition possibility set describes the states z # R+ to which it is
possible to go tomorrow, if one is in state x # R+ today. We define a
correspondence ,: R+ � R+ by ,(x)=[ y # R+ : (x, y) # 0] for each
x # R+.

A program [xt]�
0 from x # R+ is a sequence satisfying

x0=x and (xt , xt+1) # 0 for t�0.

If one is in state x today and one moves to state z tomorrow (with
(x, z) # 0) then there is an immediate utility (or ``reward'' or ``return'')
generated, measured by the utility function, u.

The discount factor, $, is the weight assigned to tomorrow's utility (com-
pared to today's) in the objective function. The discount rate (associated
with the discount factor, $) is given by \=(1�$)&1.

The following assumptions4 are imposed on the transition possibility set,
0, and the utility function, u:

(A.1) (i) (0, 0) # 0,(ii) (0, z) # 0 implies z=0.

(A.2) 0 is (i) closed, and (ii) convex.

(A.3) There is !>0 such that (x, z) # 0 and x�! implies z<x.

(A.4) If (x, z) # 0 and x$�x, 0�z$�z then (x$, z$) # 0.

286 TAPAN MITRA

4 An observation about the set of maintained assumptions, (A.1)�(A.7) is in order at this
point. We are concerned with providing an exact discount factor restriction for period-three
cycles as indicated in (1.1) in the introduction. This involves two parts, the ``necessity'' part
(i) and the ``sufficiency'' part (ii). As a general principle, with more assumptions, the
sufficiency part becomes harder to establish, the necessity part may become easier. Thus, the
choice of the set of maintained assumptions can become an important one. I have chosen to
keep the assumptions as close as possible to the ``standard'' ones used in the literature on
intertemporal allocation theory. The reader will note that this has made some assumptions
(like the ``free-disposal'' assumption (A.4) and the ``monotonicity'' assumption (A.7)) super-
fluous in providing the ``necessity'' results (Theorems 1 and 2). They have, however, made the
``sufficiency'' part somewhat harder to establish.
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Clearly, we can pick 0<`<!, such that if x>` and (x, z) # 0, then
z<x.5 It is straightforward to verify that if (x, z) # 0, then z�max(`, x). It
follows from this that if [xt]�

0 is a program from x # R+ , then
xt�max(`, x) for t�0. In particular, if x�`, then xt�` for t�0. This
leads us to choose the closed interval, [0, `] as the natural state space of
our model, which we will denote by X. We denote the interval [0, !] by
Y.

The following assumptions are imposed on the utility function, u:

(A.5) u is concave on 0; further, if (x, z) and (x$, z$) are in 0, and
x{x$, then for every 0<*<1, u(*(x, z)+(1&*)(x$, z$))>
*u(x, z)+(1&*)u(x$, z$).

(A.6) u is upper semi-continuous on 0.
(A.7) If x, x$ # Y, (x, z) # 0, x$�x and 0�z$�z, then u(x$, z$)�

u(x, z).

A program [x̂t]�
0 from x�0 is an optimal program if

:
�

0

$tu(xt , xt+1)�:
�

0

$tu(x̂t , x̂t+1)

for every program [xt]�
0 from x.

Under (A.1)�(A.7), there is a unique optimal program from every
x # R+.

3b. Value and Policy Functions
The value function V: R+ � R is defined by

V(x)=:
�

0

$tu(x̂t , x̂t+1),

where [x̂t]�
0 is the optimal program from x # R+.

The policy function h: R+ � R+ is defined by

h(x)=x̂1 ,

where [x̂t]�
0 is the optimal program from x # R+.

287DISCOUNTING AND PERIOD-THREE CYCLES

5 The fuss about making a distinction between ! and ` should perhaps be explained. Clearly
` can be a ``maximum sustainable stock,'' while ! cannot. Thus, Y=[0, !] is a somewhat
larger closed interval than the state space X=[0, `], where the important dynamics will take
place. We wanted to make assumption (A.7) on the monotone nature of the utility function
in ``standard'' form; that is, without restricting x, x$ in any way. But this created problems in
the construction of the example in Section 6b. So we settled for (A.7) in its present form, noting
thereby that the monotone restriction on u can be maintained on a larger closed interval than
the state space X, while preserving the example in Section 6b. In fact, the reader will note that
the method followed in constructing the example allows us to maintain the monotone restric-
tion on u on any large finite interval [0, ! $] containing the state space, by suitable modifica-
tion in the definition of u in the example.
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The properties of the value and policy functions can be summarized in
the following result. This is based on Dutta and Mitra [8] and Stokey et
al. [24].

Proposition 3. (i) The value function V is strictly concave6 and
continuous on R+ and non-decreasing on Y. Further, V is the unique
continuous function on Y#[0, !] which satisfies the functional equation of
dynamic programming:

V(x)= max
y # ,(x)

[u(x, y)+$V( y)].

(ii) The policy function h satisfies the following property: for each
x # R+, h(x) is the unique solution to the constrained maximization problem:

maximize u(x, y)+$V( y)

subject to y # ,(x).

Further, h is continuous on R+ .

Remarks. (i) In view of the definition of the policy function h, the
optimal program from x # X is the trajectory [ht(x)]�

0 generated by the
policy function. Thus, an optimal program from x # X can be called
periodic (with period k) if x is a periodic point of h (with period k).

(ii) Since V is concave on R+ , it has well-defined left-hand and
right-hand derivatives for all x>0, which we denote by +(x) and &(x)
respectively. For x=0, the right-hand derivative &(0) can be defined, but it
may be infinite. If x>y>0, then we have +( y)�&( y)>+(x)�&(x), the
strict inequality following from the strict concavity of V.

3c. Price Characterization of Optimality

Optimality can be conveniently characterized in terms of dual variables
or shadow prices. The theory, describing this characterization, is well
known and a cornerstone of the theory of optimal economic growth. We
state the result which we will use in the following section; a full discussion
can be found in Weitzman [26] and McKenzie [11].
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6 The strict concavity of the value function is essential to this study (as it is in the literature
discussed in Section 1). Assumption (A.5) is sufficient for this, but is not necessary (see
Montrucchio and Sorger [15] for a useful discussion). We have still maintained (A.5), since
we view, for this model, the utility function, u, as a ``primitive,'' and the value function, V, as
a ``derived'' concept.
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Proposition 4. (a) If [xt]�
0 is an optimal program from x # X and

x>0, and there is some (x� , y� ) # 0 with y� >0 then there is a sequence [ pt]�
0

of non-negative prices such that for t�0,

(i) $tV(xt)&ptxt�$tV(x)&pt x for all x�0

(ii) $tu(xt , xt+1)+pt+1xt+1&ptxt�$tu(x, y)+pt+1y&ptx for
all (x, y) # 0

(iii) limt � � pt xt=0.

(b) If [xt]�
0 is a program from x�0, and there is a sequence [ pt]�

0

of non-negative prices such that for t�0, (ii) and (iii) above are satisfied,
then [xt]�

0 is an optimal program from x.

We should add a remark here regarding the proof of part (a) of Proposi-
tion 4. If we follow McKenzie (11, Lemma 4.1), we can obtain a sequence
[ pt]�

0 , with pt # R for t�0, such that (i) and (ii) of Proposition 4(a) are
satisfied.7 Since x # X we have xt�` for t�0. By choosing `<x$�!, and
noting that V is non-decreasing on Y, V(x$)�V(xt) for t�0. Now, using
(i), pt(x$&xt)�$t[V(x$)&V(xt)]�0, so that pt�0 for t�0. The ``trans-
versality condition'' (iii) can be obtained from (i) by choosing x=(xt�2),
so that 0�(1�2)pt xt�$t[V(xt)&V(xt �2)]. Since V is continuous on X,
there is m>0 such that |V(x)|�m for all x # X. Since xt # X and
(xt �2) # X, $t[V(xt)&V(xt �2)]�2$tm. Since 2$tm � 0 as t � �, we can
conclude that (iii) holds.

If [xt]�
0 is a program from x�0, and [ pt]�

0 is a non-negative sequence
of prices satisfying (i), (ii), and (iii) of Proposition 4(a), we will say that
the program [xt]�

0 is price supported by [ pt]�
0 .

Corollary 1. If [xt]�
0 is a periodic optimal program of period k�2,

then there is a sequence [qt]�
0 which price supports [xt]�

0 such that
(qt �$t)=(qt&k �$t&k) for all t�k.

Proof. Let [xt]�
0 be a periodic optimal program of period k�2. Then

xt>0, and xt # X for t�0, so Proposition 4 is applicable. Let [ pt]�
0 be a

price support of [xt]�
0 . Define the ``current value'' prices Pt=( pt �$t) for

t�0.

289DISCOUNTING AND PERIOD-THREE CYCLES

7 In fact this is all that is needed in proving Theorem 1 (in Section 5) and Theorem 2 (in
Section 6). The non-negativity of prices and the necessity of the transversality condition for
optimal programs are not needed for that. However, given our maintained set of assumptions
(see footnote 2), these properties do follow easily and are noted to keep our exposition closely
related to the literature on ``price characterizations'' of optimal programs.
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One can show that a price support [qt]�
0 of [xt]�

0 can be found such
that its ``current value'' prices, Qt=(qt�$t) for t�0, satisfy the condition

Qt=Qt&k for t�k

This can be done by following the method of Sutherland [25] and
McKenzie [11]. Since V is continuous on X, there is m>0 such that
|V(x)|�m for all x # X. Denote min[x0 , ..., xk&1] by =. Then =>0, and by
choosing x=(=�2) in Proposition 4(i),

2m�V(xt)&V(=�2)�Pt(=�2)

so that 0�Pt�(4m�=)=m$ for all t�0.
Given j # [0, 1, 2, ..., k], denote for N�0,

Qj (N)#(Pj+Pj+k+Pj+2k+.. .+Pj+Nk)�(N+1).

Note that 0�Qj (N)�m$ for all j and N. Thus, there is a subsequence
[Ni], i=1, 2, . . . such that for j # [0, 1, ..., k], Qj (Ni) � Qj as i � �.

Given j # [0, 1, 2, ..., k&1], we can use Proposition 4 to get

V(xj)&Pj xj�V(x)&Pjx for all x�0

u(xj , xj+1)+$Pj+1 xj+1&Pj xj�u(x, z)+$Pj+1z&Pjx

for all (x, z) # 0.

The same inequality holds if (Pj+1, Pj) are replaced by (Pj+1+Nk , Pj+Nk)
for all N�0 since (xj , xj+1)=(xj+Nk , xj+1+Nk). Thus, we get, by averag-
ing over the first (N+1) inequalities,

V(xj)&Qj (N) xj�V(x)&Qj (N) x for all x�0

u(xj , xj+1)+$Qj+1(N) xj+1&Qj (N) xj�u(x, z)+$Qj+1(N) z&Qj (N) x

for all (x, z) # 0.

Letting Ni � �, we get

V(xj)&Qjxj�V(x)&Qjx for all x�0

u(xj , xj+1)+$Qj+1xj+1&Qjxj�u(x, z)+$Qj+1 z&Qjx

for all (x, z) # 0.

Now, note that for N�0,

Qk(N)=[Pk+P2k+ } } } +P(N+1)k]�(N+1)

=Q0(N)+[(P(N+1)k&P0)�(N+1)].
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Thus we have

Qk= lim
i � �

Qk(Ni)= lim
i � �

Q0(Ni)=Q0 .

Now, defining Qt=Qt&k for t>k, and qt=Qt$t for t�0, it is
straightforward to check that [qt]�

0 is a price support of [xt]�
0 .

4. The Value-Loss Approach to Minimum Impatience Results

In this section, we describe our approach to obtaining minimum
impatience results. It is based on the observation that at the prices support-
ing an optimal program, there is no activity which yields a higher
``generalized profit'' at any date (value of utility plus value of terminal
stocks minus value of initial stocks at that date) than the activity chosen
along the optimal program at that date In other words, there are no
arbitrage possibilities available at the supporting prices.

We now proceed to explain this more formally. Let [xt]�
0 be an optimal

program with supporting prices [ pt]�
0 . Then, the value loss at date t if the

economy chooses (x, z) # 0 (instead of (xt , xt+1) # 0) is

Lt(x, z; [xt , pt]�
0 )=$tu(xt , xt+1)+pt+1xt+1&pt xt

&[$tu(x, z)+pt+1z&pt x]. (4.1)

Since [ pt]�
0 supports [xt]�

0 , we have

Lt(x, z;[xt , pt]�
0 )�0 for all (x, z) # 0. (4.2)

Now let [ yt]�
0 be another optimal program with supporting prices

[qt]�
0 . Then the value loss at date t if the economy chooses (x, z) # 0

(instead of ( yt , yt+1) # 0) is

Lt(x, z; [ yt , qt]�
0 )=$tu( yt , yt+1)+qt+1yt+1&qt yt

&[$tu(x, z)+qt+1z&qt x]. (4.3)

Since [qt]�
0 supports [ yt]�

0 , we have

Lt(x, z; [ yt , qt]�
0 )�0 for all (x, z) # 0. (4.4)

If we apply (4.1) to ( yt , yt+1) # 0, we get

$tu(xt , xt+1)+pt+1xt+1&pt xt=$tu( yt , yt+1)+pt+1yt+1&pt yt

+Lt( yt , yt+1, [xt , pt]�
0 ). (4.5)
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Similarly, if we apply (4.3) to (xt , xt+1) # 0, we get

$tu( yt , yt+1)+qt+1yt+1&qt yt=$tu(xt , xt+1)+qt+1xt+1&qt xt

+Lt(xt , xt+1; [ yt , qt]�
0 ). (4.6)

Combining (4.5) and (4.6), we get

Lt(xt , xt+1 ; [ yt , qt]�
0 )+Lt( yt , yt+1 ; [xt , pt]�

0 )

=&( pt+1&qt+1)( yt+1&xt+1)+( pt&qt)( yt&xt). (4.7)

Using (4.2) and (4.4) in (4.7), we get

( pt+1&qt+1)( yt+1&xt+1)�( pt&qt)( yt&xt). (4.8)

Denoting ( pt �$t) by Pt and (qt�$t) by Qt for t�0 (these are, of course, the
``current value prices''), we get

$(Pt+1&Qt+1)( yt+1&xt+1)�(Pt&Qt)( yt&xt). (4.9)

By (A.5), the inequality in (4.9) is strict if xt{yt .
This fundamental inquality yields all the discount factor restrictions that

we will derive in this paper. But, before we do, we need to know the sign
of the typical term (Pt&Qt)( yt&xt). This is fairly easy. Since [ pt]�

0 is a
price support of [xt]�

0 ,

$tV(xt)&ptxt�$tV( yt)&pt yt . (4.10)

Since [qt]�
0 is a price support of [ yt]�

0 ,

$tV( yt)&qtyt�$tV(xt)&qtxt . (4.11)

Combining (4.10) and (4.11),

( pt&qt)( yt&xt)�0. (4.12)

Dividing through in (4.12) by $t,

(Pt&Qt)( yt&xt)�0 (4.13)

By the strict concavity of V, the inequality in (4.13) is strict if yt{xt . We
summarize the above discussion in the following proposition.

Proposition 5. Let (0, u, $) be a dynamic optimization model. Suppose
[xt]�

0 is an optimal program with price support [ pt]�
0 , and [ yt]�

0 is an
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optimal program with price support [qt]�
0 . Denoting ( pt �$t) by Pt and

(qt �$t) by Qt for t�0 we have

(i) $(Pt+1&Qt+1)( yt+1&xt+1)�(Pt&Qt)( yt&xt) for t�0

(ii) (Pt&Qt)( yt&xt)�0 for t�0.

Furthermore, if yt{xt from some t, then the inequalities in (i) and (ii) are
strict for that t.

Let us demonstrate how the basic inequalities of Proposition 5 can be
used to obtain minimum impatience theorems. The typical situation that
we will be applying it to will involve an optimal program [xt]�

0 exhibiting
the pattern

x2<x0<x1 .

That is, first the state variable increases, (x1>x0) and then it falls below
the original level (x2<x0). We will show8 that this immediately leads to a
discount factor restriction

$<(x1&x0)�(x1&x2). (4.14)

Proposition 6. Let (0, u, $) be a dynamic optimization model. Suppose
[xt]�

0 is an optimal program.

(i) If x2<x0<x1 , then $<(x1&x0)�(x1&x2).

(ii) If x1<x0<x2 , then $<(x0&x1)�(x2&x1).

Proof. We will only establish (i), since (ii) follows by similar
arguments.

If x2<x0<x1 , then x0>0, and (x0 , x1) # 0 with x1>0. Thus, Proposi-
tion 4 is applicable, and let [ pt]�

0 be a price support of [xt]�
0 . The

sequence [ yt]�
0 defined by yt=xt+1 for t�0 is a program from y0 #x1 ,

and it is clearly an optimal program from y0 . Defining a sequence [qt]�
0

by qt=( pt+1�$) for t�0. it is straightforward to check that [qt]�
0 is a

price support of [ yt]�
0 . Thus, Proposition 5 is applicable.

Applying Proposition 5 for t=0, and noting that x0{x1=y0 ,
x1{x2=y1 , we get

0<$(P1&Q1)( y1&x1)<(P0&Q0)( y0&x0). (4.15)
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This yields the discount factor restriction

$<(P0&Q0)( y0&x0)�(Q1&P1)(x1&y1). (4.16)

It follows from Proposition 4(i) that &(xt)�Pt , &( yt)�Qt ; furthermore
Pt�+(xt), Qt�+( yt) whenever xt>0, yt>0. Thus, we get

P0�&(x0)>+(x1)=+( y0)�Q0 (4.17)

since x0<x1 and V is strictly concave. Similarly, we get

Q1�&( y1)=&(x2)>+(x1)�P1 (4.18)

since x2<x1 and V is strictly concave. So (P0&Q0)>0, (Q1&P1)>0 and

(Q1&P1)�[&(x2)&P1]>[+(x0)&P1]�[P0&P1]=(P0&Q0). (4.19)

Also ( y0&x0)=(x1&x0)>0, and (x1&y1)=(x1&x2)>0. Thus, (4.16)
yields

$<
( y0&x0)
(x1&y1)

=
(x1&x0)
(x1&x2)

,

which establishes the result.

Remark. Proposition 6 imposes strong discount factor restrictions on
dynamic optimization models yielding the logistic map or the tent map as
their policy functions.

If a dynamic optimization model (0, u, $) has the tent map (h(x)=2x
for 0�x�0.5, h(x)=2&2x for 0.5�x�1) as its policy function, then
(x0 , x1 , x2 . . .)=(1�2, 1, 0, 0, . . .) is an optimal program with x2<x0<x1 ,
so that $ must be less than (1�2) by Proposition 6.

If (0, u, $) has the logistic map (h(x)=4x(1&x) for 0�x�1) as
its policy function, then (x0 , x1 , x2 , . . .)=(0.625, 0.9375, 0.234375, . . .) is
an optimal program with x2<x0<x1 , so that $<0.4 by Proposition 6.
More generally, if (0, u, $) has the quadratic map (h(x)=+x(1&x) for
0�x�1, with 3<+�4) as its policy function, then choosing
x0=0.5(1++)�+, x1=h(x0), x2=h(x1), one can show that $<4�(+&1)2

by applying Proposition 6.

5. A Discount Factor Restriction for Period-Three Cycles

While Proposition 6 is useful in obtaining some discount factor restric-
tions (as noted in the previous section) its shortcoming is that it may not
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be very useful when the only information we have is that there is a period-
three cycle (i.e., when the nature of the policy function on the rest of its
domain is not known).

Proceeding more formally, suppose [xt]�
0 is an optimal program of a

dynamic optimization model (0, u, $), exhibiting a period-three cycle. Then
we can order the set [x0 , x1 , x2] on the real line. Let the highest value be
b, the lowest value be a, and the middle value be c. Then, denoting the
policy function by h, we have two possibilities (i) h(c)=a, (ii) h(c)=b. In
(i), we must also have h(a)=b and h(b)=c; similarly in case (ii), we must
have h(b)=a and h(a)=c. Thus, denoting the optimal program from c by
[ yt]�

0 , we have two possibilities: (i) y2<y0<y1 , or (ii) y1<y0<y2 . Then
Proposition 6 is applicable, yielding

$<( y1&y0)�( y1&y2). (5.1)

But, not knowing exactly where y0 is between y1 and y2 , the discount factor
restriction obtained from (5.1) can be quite weak (when y0 is close to y2).

The way to strengthen the restriction imposed by (5.1) is suggested by
the observation that Proposition 6 does not fully exploit the fact that there
is a period-three cycle. In particular, y3=h( y2)=y0 is nowhere used, and
this information should yield a restriction in addition to (5.1). This addi-
tional restriction turns out to be

$2<( y0&y2)�( y1&y2). (5.2)

Now the two restrictions can be combined to yield

$<[- 5&1]�2, (5.3)

which is completely independent of the actual value of y0 (or, for that
matter, y1 and y2). This is formally demonstrated in the following theorem.

Theorem 1. Let (0, u, $) be a dynamic optimization model, with a policy
function h. If h exhibits a period-three cycle, then

$<[- 5&1]�2. (5.4)

Proof. Let the three values of the period-three cycle be ordered so that
a<c<b. There are then exactly two possibilites: (i) h(c)=b [in which case
h(b)=a and h(a)=c], or (ii) h(c)=a [in which case h(a)=b and
h(b)=c]. We concentrate on the first possibility, since the second one can
be analyzed similarly.

In case (i), let [xt]�
0 be the optimal program from c. Then

x0=c, x1=b, x2=a, x3=c, and

x2<x0<x1 .
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Applying Proposition 6, we have

$<(x1&x0)�(x1&x2). (5.5)

Note that x0>0, and (x0 , x1) # 0 with x1>0, so Proposition 4 is
applicable, and there is a sequence [ pt]�

0 which provides a price support
to [xt]�

0 .
The sequence [ yt]�

0 defined by yt=xt+2 for t�0 is a program from
y0=x2 , and it is clearly an optimal program from y0 . Defining [qt]�

0 by
qt=( pt+2 �$2) for t�0, it is easy to check that [qt]�

0 is a price support of
[ yt]�

0 . Applying Proposition 5 for t=0, and noting that x0{x2=y0 ,
x1{x0=x3=y1 , we get

0<$(P1&Q1)( y1&x1)<(P0&Q0)( y0&x0). (5.6)

Applying Proposition 5 for t=1, and noting that x1{x0=y1 , x2{x1=
x4=y2 , we get

0<$(P2&Q2)( y2&x2)<(P1&Q1)( y1&x1). (5.7)

Combining (5.6) and (5.7), we get

$2<
(P0&Q0)( y0&x0)
(P2&Q2)( y2&x2)

=
(Q0&P0)(x0&y0)
(P2&Q2)( y2&x2)

=
(P2&P0)(x0&y0)
(P2&Q2)( y2&x2)

. (5.8)

It follows from Proposition 4(i) that

P0�+(x0)<&(x2)�P2 (5.9)

since x0>x2 and V is strictly concave. Similarly, we get

P2�&(x2)>+(x1)=+( y2)�Q2 (5.10)

since x2<x1 and V is strictly concave. Thus (P2&P0)>0 and
(P2&Q2)>0, and

(P2&Q2)�[P2&+( y2)]=[P2&+(x1)]>[P2&&(x0)]�(P2&P0). (5.11)

Thus (5.8) yields the restriction

$2<(x0&y0)�( y2&x2)=(x0&x2)�(x1&x2). (5.12)

Denote (x1&x0)�(x1&x2) by :. Then 0<:<1, and (1&:)=
(x0&x2)�(x1&x2). Thus using (5.5) and (5.12),

$<min[:, - 1&:]. (5.13)
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Denote (- 5&1)�2 by ;, so that ;2=(1&;). Thus if :�;, then

min[:, - 1 & :] � - 1 & : � - 1 & ; = ;. And if 0 < : < ;, then

min[:, - 1&:]<;. Thus in either case,

min[:, - 1&:]�;=(- 5&1)�2. (5.14)

Combining (5.13) and (5.14), we get (5.4).

Remark. Sorger [22] obtained the discount factor restriction (5.4) of
Theorem 1, by applying the theory of stochastic dominance. The restric-
tion has been refined to $<0.5479 in Sorger [23], using the same
methods.

Montrucchio [14] does not address directly the problem of finding a
discount factor restriction for period three cycles. However, he establishes
(under strong concavity assumptions on the utility function) that if
(0, u, $) is a dynamic optimization model with policy function h, and the
topological entropy of h is 9(h), then the discount factor, $, is related to
the topological entropy by the inequality

$�e&9(h). (5.15)

It has been shown in Mitra [13] that if h exhibits a period-three cycle then
(5.15) can be used to obtain the discount factor restriction (5.4) of
Theorem 1. The inequality (5.15) actually holds under the assumptions
used in this paper: this follows from the recent work of Montrucchio and
Sorger [15].

6. An Exact Discount Factor Restriction for Period-Three Cycles

6a. The Main Result

Theorem 1 provides a strong restriction on the discount factor for
period-three cycles, but as we mentioned in the previous section, stronger
restrictions have already been obtained. This suggests that, in establishing
the Theorem, we have not exploited the full implication of the existence of
a period-three cycle; in other words, we have thrown out useful informa-
tion somewhere along the line of our argument.

In order to see most clearly what we have left out, assume that the value
function is differentiable at the points of the period-three cycle. Then the
``current value prices'' are simply the derivatives of the value function at the
respective points.

297DISCOUNTING AND PERIOD-THREE CYCLES



File: 642J 210818 . By:CV . Date:03:06:96 . Time:16:19 LOP8M. V8.0. Page 01:01
Codes: 2793 Signs: 2071 . Length: 45 pic 0 pts, 190 mm

Now, if we look at the proof of Theorem 1 carefully, we notice that the
restriction (5.5) is obtained from the inequality (4.16) in Proposition 6
which now reads

$<
[V$(x0)&V$(x1)](x1&x0)
[V$(x2)&V$(x1)](x1&x2)

. (6.1)

Similarly, the restriction (5.12) is obtained from the inequality (5.8), which
reads

$2<
[V$(x2)&V$(x0)](x0&x2)
[V$(x2)&V$(x1)](x1&x2)

. (6.2)

We know that [V$(x0)&V$(x1)]�[V$(x2)&V$(x1)] is between 0 and 1 and
thus (6.1) yields (5.5). But nothing more is known about the ratio, and it
could well be very close to 1. The same could be said about the ratio
[V$(x2)&V$(x0)]�[V$(x2)&V$(x1)] and the relation of (6.2) to (5.12). But
both ratios cannot be close to 1: in fact, if one is close to 1, the other is
close to zero, independent of how concave V is. In this regard, these ratios
play exactly the same role in the expressions (6.1) and (6.2), as the ratios
involving the primal variables (x1&x0)�(x1&x2) and (x0&x2)�(x1&x2).
Since we were able to exploit the inequalities (5.5) and (5.12), involving
only the primal variables, to get a discount factor restriction of (- 5&1)�2,
we should be able to exploit (6.1) and (6.2) to yield a restriction which is
exactly the square of this number. We now proceed to prove this formally
[No assumption regarding the differentiability of V will be made in the
formal proof].

Theorem 2. Let (0, u, $) be a dynamic optimization model, with a policy
function h. If h exhibits a period-three cycle then

$<[(- 5&1)�2]2. (6.3)

Proof. As in the proof of Theorem 1, let the three values of the period-
three cycle be ordered so that a<c<b. There are two possibilities to
consider: (i) h(c)=b [in which case h(b)=a and h(a)=c], or (ii) h(c)=a
[in which case h(a)=b and h(b)=c]. We concentrate on possibility (i);
(ii) can be analyzed similarly.

In case (i), let [xt]�
0 be the optimal program from c. Then

x0=c, x1=b, x2=a, x3=c, and x2<x0<x1 . Let [ pt]�
0 be a price sup-

port of [xt]�
0 .

The sequence [zt]�
0 defined by zt=xt+1 for t�0 is a program from

z0=x1 , and it is the optimal program from z0 . Defining a sequence [rt]�
0
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by rt=( pt+1 �$) for t�0, it is easy to check that [rt]�
0 is a price support

of [zt]�
0 . Denote ( pt�$t) by Pt and (rt �$t) by Rt for t�0.

Now, following the proof of Proposition 6, we get

$<
(P0&R0)(z0&x0)
(R1&P1)(x1&z1)

, (6.4)

where 0<(P0&R0)<(R1&P1), and 0<(z0&x0)<(x1&z1). Now
R0=r0=( p1 �$)=P1 , and R1=(r1 �$)=(P2 �$2)=P2 . Also z0=x1 and
z1=x2 . Thus (6.4) can be rewritten as

$<
(P0&P1)(x1&x0)
(P2&P1)(x1&x2)

. (6.5)

The sequence [ yt]�
0 defined by yt=xt+2 for t�0 is a program from

y0=x2 , and it is the optimal program from y0 . Defining a sequence [qt]�
0

by qt=( pt+2 �$2) for t�0, it is easy to check that [qt]�
0 is a price support

of [ yt]�
0 . Denote (qt�$t) by Qt for t�0.

Then, following the proof of Theorem 1, we get

$2<
(Q0&P0)(x0&y0)
(P2&Q2)( y2&x2)

, (6.6)

where 0<(Q0&P0)<(P2&Q2), and 0<(x0&y0)<( y2&x2). Now,
Q0=q0=( p2 �$2)=P2 and Q2=(q2 �$2)=( p4 �$4)=P4=P1 , the last
equality following from Corollary 1. Also y0=x2 and y2=x1 . Thus (6.6)
can be rewritten as

$2<
(P2&P0)(x0&x2)
(P2&P1)(x1&x2)

. (6.7)

Denote (P0&P1)�(P2&P1) by :; then 0<:<1, and (1&:)=
(P2&P0)�(P2&P1). Denote (x1&x0)�(x1&x2) by #; then 0<#<1 and
(1&#)=(x0&x2)�(x1&x2). Thus (6.5) and (6.7) yield the restriction

$<min[:#, - (1&:)(1&#)]. (6.8)

Denoting (:+#)�2 by ', we have

min[:#, - (1&:)(1&#)]�min['2, - (1&')2]. (6.9)

Using (6.9) in (6.8), we get

$<min['2, (1&')]. (6.10)
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As in the proof of Theorem 1, denote (- 5&1)�2 by ;, so that ;2=1&;.
If '�;, then (1&')�(1&;)=;2, so that min['2, (1&')]�;2. If
0<'<;, then '2<;2, so that min['2, (1&')]<;2, Thus, in either case,

min['2, (1&')]�;2. (6.11)

Using (6.11) in (6.10), we get (6.3).

6b. The Example
We now proceed to show that the discount factor restriction obtained in

Theorem 2 for period-three optimal cycles is the best possible. We do this
by constructing an example, when $<[(- 5&1)�2]2, of a transition
possibility set, 0, and a utility function, u, such that (0, u, $) exhibits a
period-three optimal cycle.

The constructed example is a simple adaptation, for our purpose, of the
example given in Nishimura et al. [16]. Denote [(- 5&1)�2]2 by M, and
assume that 0<$<M. Define, #=1�- M so that 1<#<2 and #2M=1.
Then #2$<1, and it is possible to find :>1, such that #2$<(1�:). Choose
%>:$�(1&#2$) and ;>2max[(1�#2$), 2:+#%(2#&1)].

Define the transition possibility set, 0, by

0=[(x, z) # R2
+ : z�min(#x, 1)].

Then (A.1)�(A.4) are satisfied.
Let H� =[x, z) # R2: z�2&#x] and H� =[(x, z) # R2: z�2&#x].

Define the reduced form utility function u: 0 � R by

u(x, z)=[;&(2�#)] x&(:&1) x2&[;$&(2�#2)] z&[(1�#2)&:$] z2

for (x, z) # H� & 0

u(x, z)=(4#%+;) x&(:+#2%) x2&(;$&4%) z&(%&:$) z2&2#%xz&4%

for (x, z) # H� & 0.

Then, by using the proof of Lemma 3.1 in Nishimura et al. [16],
(A.5)�(A.7) are satisfied.

By using the proof of Lemma 3.2 of Nishimura et al. [16], the policy
function of the constructed model (0, u, $) is given by

h(x)={#x
2&#x

for x # [0, 1�#]
for x # [1�#, 1].

Note that h(1)=(2&#), and (2&#)=2&(1�- M)=1&- M=M, so

that 0<(2&#)<- M=(1�#). Thus h(2&#)=#(2&#)=(M�- M)=- M,

and h(- M)=1. Thus (1, M, - M, 1, M, - M, . . .) is the optimal program
starting from 1. This optimal program clearly exhibits a period-three cycle.
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7. Discount Factor Restrictions for Periodic Optimal Programs

In this final section, we will find discount factor restrictions for any
dynamic optimization model exhibiting a periodic optimal program of
period not equal to a power of 2. To illustrate our method of deriving these
restrictions most transparently, we first obtain a restriction for an impor-
tant special case.

Specifically, we obtain an upper bound on the discount factor, $, that
must be satisfied in order that a dynamic optimization model (0, u, $) yield
a periodic optimal program of odd period greater than one. It is important
to note that this bound holds uniformly for all odd periods greater than
one.

In order to establish these results, we will find it convenient to present
a preliminary result which compares the value and policy functions of two
dynamic optimization models. To proceed more formally, let us refer to a
triplet (0, u, $) satisfying (A.1)�(A.7) as a dynamic optimization model.
Now, let I=(0, u, $) be a dynamic optimization model, with value func-
tion V and policy function h. We can then construct9 another dynamic
optimization model I*=(0*, u*, $*) with $*=$2, such that the policy
function, h*, of I* is h2 and the value function, V*, of I* is V.

Proposition 7. Let I=(0, u, $) be a dynamic optimization model, with
value function V and policy function h. Then, there exists 0* and u* satisfy-
ing (A.1)�(A.7) such that with $*=$2, (i) the value function, V*, of the
dynamic optimization model I*=(0*, u*, $*) is given by V, and (ii) the
policy function, h*, of I* is given by h2.

Proof. Define 0=[(x, z): there is y # R+ such that (x, y) # 0 and
( y, z) # 0]. Define, next, u*: 0* � R by

u*(x, z)=max[u(x, y)+$u( y, z)]

subject to (x, y) # 0= (P).

and ( y, z) # 0.

It is straightforward to check that 0* and u* satisfy assumptions
(A.1)�(A.5) and (A.7).

To check (A.6), one essentially applies the method used to obtain a
version of a maximum theorem in Berge [1; Theorem 2, p. 116].
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9 Sorger [21] proves a result similar to Proposition 7. However his set of maintained
assumptions on a dynamic optimization model is different from ours. It is not clear to us
whether Proposition 7 is valid if the upper-semicontinuity of the utility function in (A.6) is
replaced by continuity.
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Let (xs, zs), s=1, 2, ..., be a sequence of elements in 0* converging to
(x0, z0). For (xs, zs), s=1, 2, ..., let ys solve problem (P). Then since xs � x0

as s � �, and (xs, ys) # 0, ys is in a bounded set (by (A.1) and (A.2)). Let
( ys$) be an arbitrary convergent subsequence of ( ys), converging to y0.

Since (xs$, ys$) � (x0, y0), and ( ys$, zs$) � ( y0, z0) as s$ � �, and
(xs$, ys$) # 0 and ( ys$, zs$) # 0 for all s$, we have (x0, y0) # 0 and ( y0, z0) # 0.
Now, we have

lim
s$ � �

u*(xs$, zs$)= lim
s$ � �

[u(xs$, ys$)+$u( ys$, zs$)]

� lim
s$ � �

u(xs$, ys$)+$ lim
s$ � �

u( ys$, zs$)

�u(x0, y0)+$u( y0, z0),

the last inequality following from the upper semicontinuity of u. By defini-
tion of u*, we also have

u(x0, y0)+$u( y0, z0)�u*(x0, z0).

Thus, we obtain

lim
s$ � �

u*(xs$, zs$)�u*(x0, z0).

Since ( ys$) was an arbitrary convergent subsequence of ( ys), this establishes
property (A.6) of u*.

Denote the value and policy functions of the dynamic optimization
model (0*, u*, $*), where $*=$2, by V* and h*.

To compare the value functions of the two dynamic optimization
models, I=(0, u, $) and I*=(0*, u*, $*), we will find it convenient to
refer to programs and optimal programs in the former by the prefix I and
in the latter by I*.

Let x�0 be arbitrarily given, and let [xt] be I*-optimal from x. Then
there is [ yt] such that yt solves (P) for (x, z)=(xt , xt+1). Define kt=xt�2

for t=0, 2, 4, ..., and kt=y(t&1)�2 for t=1, 3, 5, . . . Then [kt] is a I

program. Further,

V*(x)=:
�

0

($2)t u*(xt , xt+1)

=:
�

0

($2)t [u(xt , yt)+$u( yt , xt+1)]

=:
�

0

$t u(kt , kt+1)�V(x).
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On the other hand, let [k$t] be I-optimal from x. Then, defining [xt] by
xt=k$2t for t�0, [xt] is a I*-program from x, and

V(x)=:
�

0

$tu(k$t , k$t+1)

=:
�

0

($2)t [u(k$2t , k$2t+1)+$u(k$2t+1, k$2t+2 )]

�:
�

0

($2)t u*(k$2t , k$2t+2 )�V*(x).

Thus, V(x)=V*(x), which shows that V=V*, since x�0 was arbitrary.
To compare the policy functions, let x�0 be arbitrary, and let [kt] be

I-optimal from x. Then defining xt=k2t for t�0, [xt] is a I-program
from x. Now,

V*(x)�:
�

0

($2)t u*(xt , xt+1)

�:
�

0

($2)t [u(k2t , k2t+1)+$u(k2t+1 , k2t+2)]

=:
�

0

$t u(kt , kt+1)=V(x)=V*(x).

Thus we must have equalities in all the above inequalities, so that [xt] is
I-optimal from x. This establishes that h*(x)=h2(x), and since x�0 was
arbitrary, h*=h2.

Theorem 3. Suppose (0, u, $) is a dynamic optimization model with
policy function h. Let k>1 be any odd integer. If h has a periodic orbit of
period k, then

$<(- 5&1)�2. (7.1)

Proof. If h has a periodic orbit of period k where k>1 is an odd
integer, then by Sarkovskii's result (Proposition 1), h has a periodic orbit
of period 6. This implies that h2 has a periodic orbit of period 3.

By Proposition 7, there exists a dynamic optimization model,
I*=(0*, u*, $*), with $*=$2, such that the policy function, h*, of I* is
given by h2. By using Theorem 2, we can conclude that

$*<[(- 5&1)�2]2 .

Since $*=$2, (7.1) follows immediately.
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Remarks. (i) Sorger [22] conjectured that one can find for every
$ # (0, 1) and odd number p�3 and a continuous function h from [0, 1]
to [0, 1], such that h is the policy function of a dynamic optimization
model (0, u, $), and h has a periodic point of period p. Theorem 3 indicates
that this conjecture is false for 1>$�(- 5&1)�2.

(ii) The restriction in (7.1) on the discount factor translates to the
discount rate restriction

\>(- 5&1)�2r0.618,

which still involves substantial discounting.

(iii) There is no claim in our result that the discount factor restric-
tion (7.1) is the ``best possible.'' In fact, applying the theory of turbulence
to this problem, I have shown elsewhere (see Mitra [12]) that the bound
in (7.1) can be improved.

The Sarkovskii ordering and the above method of proof can be used to
obtain discount factor restrictions that must hold in order that optimal
programs be periodic with period p=2q. k where q�0 and k>1 is an odd
integer.

Corollary 2. Suppose I=(0, u, $) is a dynamic optimization model
with policy function h. Let k>1 be an odd integer, q be a non-negative
integer, and p=2q .k. If h has a periodic orbit with period p, then

$<[(- 5&1)�2]1�2q
. (7.2)

Remark. Nishimura and Yano [17] have constructed a sequence of
dynamic optimization models In #(0n , un , $n), for n=0, 1, 2, ..., such that
In exhibits a periodic point of period 3.2n and $n � 1 as n � �. This
appears to be in accord with the discount rate restrictions we obtain in our
result not being uniformly below 1. For n=0, 1, 2, 3, they also noted that
in obtaining each successive model exhibiting a period twice that in the
previous model (6 compared to 3, 12 compared to 6, 24 compared to 12),
the (minimum) discount factor needed was approximately ``square rooted.''
This feature also appears to be in accord with the formula we obtain for the
discount rate restrictions.
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